Feedforward Neural Networks with a Hidden Layer Regularization Method
نویسندگان
چکیده
منابع مشابه
Classification ability of single hidden layer feedforward neural networks
Multilayer perceptrons with hard-limiting (signum) activation functions can form complex decision regions. It is well known that a three-layer perceptron (two hidden layers) can form arbitrary disjoint decision regions and a two-layer perceptron (one hidden layer) can form single convex decision regions. This paper further proves that single hidden layer feedforward neural networks (SLFN's) wit...
متن کاملRegularization parameter estimation for feedforward neural networks
Under the framework of the Kullback-Leibler (KL) distance, we show that a particular case of Gaussian probability function for feedforward neural networks (NNs) reduces into the first-order Tikhonov regularizer. The smooth parameter in kernel density estimation plays the role of regularization parameter. Under some approximations, an estimation formula is derived for estimating regularization p...
متن کاملA new feedforward neural network hidden layer neuron pruning algorithm
This paper deals with a new approach to detect the structure (i.e. determination of the number of hidden units) of a feedforward neural network (FNN). This approach is based on the principle that any FNN could be represented by a Volterra series such as a nonlinear inputoutput model. The new proposed algorithm is based on the following three steps: first, we develop the nonlinear activation fun...
متن کاملModelling and Forecasting Economic Time Series with Single Hidden-Layer Feedforward Autoregressive Artificial Neural Networks
is a scientific institution which works independently of economic, political and sectional interests. It conducts theoretical and empirical research in management and economic sciences, including selected related disciplines. The Institute encourages and assists in the publication and distribution of its research findings and is also involved in the doctoral education at the Stockholm School of...
متن کاملOn the approximation by single hidden layer feedforward neural networks with fixed weights
Single hidden layer feedforward neural networks (SLFNs) with fixed weights possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the probability of the considered network to give precise results. In this note, we constructivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2018
ISSN: 2073-8994
DOI: 10.3390/sym10100525